The Power of Electrification in Preservation: NPS Fort Vancouver Museum Facility


Background:

The National Park Service (NPS) stores, maintains, and displays historic collections, artifacts, and culturally significant pieces across various sites. Recognizing the need for efficient infrastructure, NPS seized the opportunity to relocate collections and archives from several sites in the Northwest Region into one larger facility at Fort Vancouver National Historic Site in Washington.

Key Objectives:
  • Reduce deferred maintenance
  • Decrease operation and maintenance (O&M) costs
  • Address museum standard deficiencies
Site Selection:

NPS chose Fort Vancouver Building 405 as the repository for collections from four national parks, totaling over 3 million items.

Inside Building 405 – Before Construction (Photo Credit: Anderson Hallas Architects)

Fort Vancouver Building 405 Rehabilitation Project

Facility Overview:
  • An existing 14,000-square-foot 1980s aircraft maintenance hangar
  • Selected for rehabilitation to serve as a museum collection storage facility
  • Dedicated spaces for object and archival storage, curated labs, and public viewing areas
Public Engagement Spaces:
  • Climate-controlled zones for high storage capacity
  • Visible spaces for public viewing in a preservation-friendly manner
  • Spaces for curatorial labs visible to the public
  • Large gathering spaces for school field trips and general assembly use

Mechanical System Options by 360 Engineering

Discovery and Presentation on Anderson Hallas Architect’s Team:
  • Based on our evaluation of the existing building and project goals, including 100% electrification, 360 Engineering explored various options
  • Presented options in a “Choosing By Advantage” or Value Analysis format, providing three options
  • Brennen Guy and Spencer Rioux presented to NPS staff at Fort Vancouver, addressing the pros and cons of each option
360 Engineering Project Manager, Brennen Guy, PE (CO), Presenting to NPS
Variable Refrigerant Flow (VRF) System Selected:
  • Reasons for Selection:
    • Minimizes ductwork to maximize storage space
    • Accommodates varying occupancies, including critical storage, laboratories, assembly spaces, library, and offices
    • Aligns with NPS’ energy-efficient principles, promoting reduced consumption and fossil fuel reliance
Advantages of VRF System:
  • Efficiently manages heating and cooling loads for diverse occupancies
  • Facilitates refrigerant heat recovery between zones, reducing energy waste
  • Aligns with NPS’ commitment to energy-efficient systems
Fort Vancouver Building 405 Rendering (Photo Credit: Anderson Hallas Architects)

Conclusion

Adopting the Variable Refrigerant Flow (VRF) system for Fort Vancouver marks a significant step in realizing NPS’ Service-Wide Curation Facility Plan. This decision ensures optimal preservation conditions for the extensive collection while promoting energy efficiency in line with NPS’ principles.

Ready to upgrade your building or project with electrification? Let’s discuss your Mechanical Engineering needs today. Contact us to book a 30-minute consultation.

Exploring Complete Electrification in Denver


At 360, we are constantly looking for ways to comply with the ever-changing permitting requirements and climate change mitigation efforts that the city of Denver implements. Our world is constantly evolving, and we need to find solutions to new climate challenges each day. In this blog post, we will discuss the opportunities for Complete Electrification in Denver

Our team is critically looking at options to ensure each project we work on not only meets the required regulations but is cost-effective too. Read along to see the importance of electrification and its impact.

What We Look At

In 2019, buildings and homes accounted for 64% of all community-generated greenhouse gas emissions in the city of Denver1. In 2020 Denver had the worst air pollution in 10 years2. Natural ventilation isn’t as effective when the air quality continues to decline, and moving to an all-electric system could mitigate safety issues associated with poor air quality while also reducing greenhouse gas emissions.

What is the Road Map to Electrification?

  • Effective Now
    • Obtaining “Quick Permits” is no longer allowed for replacing air handling units or water heaters utilizing natural gas in commercial buildings. The permitting process for these projects will be the same as applying for a new heat pump.  There are a few exceptions.
  • Starting January 1st, 2025
    • Replacement of outdoor gas-fired equipment used primarily for heating needs to be electric, and secondary gas-fired heating equipment can be installed for supplemental heat only.
    • Replacement of outdoor cooling air conditioning or condensing unit equipment needs to be electric and provide space heating (like a heat pump), and a secondary piece of equipment can be installed for supplemental heat only. 
    • Replacement of a storage water heater or instantaneous water heater needs to be an electric water heater.
  • Starting January 1st, 2027
    • Replacement of gas-fired boilers must utilize electric heating for 50% of space heating needs/water heating needs; the remaining 50% can be met with a replacement of the gas-fired boiler.
    • Replacement of an air conditioner that serves spaces that are also being heated needs to be replaced with electric equipment that does both heating and cooling.

How does this affect the A&E Industry?

  • Denver will require reporting of estimated building Energy Use Intensity (EUIs) with targeted goals in 2024, 2027, and 2030.
  • There will be fines associated with incorrect modeling/inability to meet target EUIs (as established by Denver).
  • High-Efficiency Mechanical equipment will be the standard.
  • Increased coordination between disciplines will be even more important.
  • All disciplines (not just mechanical) have options to assist in Denver’s EUI requirements:
    • LED lighting
    • Green-sourced energy
    • High efficiency, tight envelope construction
    • Energy Star and low-water plumbing fixtures

Limitations of Electrification

  • Upfront costs for heat pumps are typically higher than standard Direct Expansion (DX) cooling and gas-fired air handling units.
  • Currently, gas rates in Denver are still lower per amount of heat energy than electricity.
  • Newer technology for building operators: lack of experience may result in lack of confidence in new heat pump technology.  Additional training may be needed for facility staff.
  • Most existing buildings were not provided with an electrical service intended for full building heating.  An Electrification Feasibility Report is one way to determine the impact of a fully electric mechanical system on the building infrastructure. 

Let’s Wrap it Up

With the new regulations coming, Life Cycle Cost Analysis (LCCA) will become even more important to show the offset of maintenance, utility, and upfront costs between mechanical systems. It is important to know the regulations to ensure the safety and longevity of your product. Energy modeling is already required in some cities like Boulder and will become required in Denver to demonstrate energy compliance.

For any questions or inquiries or to get started on your next project, Contact Us.

References

1 https://denvergov.org/files/assets/public/climate-action/documents/denver-nze-implementation-plan_final_v1.pdf

2 https://www.colorado.gov/airquality/tech_doc_repository.aspx?action=open&file=2020AnnualDataReport.pdf

Vocabulary

Direct Expansion (DX): the most common type of air conditioning in the US where the indoor air is cooled with a refrigerant liquid.

Electrification: the conversion of a machine or system to the use of electrical power.

Energy Use Intensity (EUI): refers to the amount of energy used per square foot annually.

Life Cycle Cost Analysis (LCCA): it is an economic evaluation technique that determines the total cost of owning and operating a facility over a period of time.